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ABSTRACT 

Estimates of ground-level ozone concentrations are necessary to determine the human 

health burden of ozone. To support the Global Burden of Disease Study, we produce yearly fine 

resolution global surface ozone estimates from 1990 to 2017 through a data fusion of 

observations and models. As ozone observations are sparse in many populated regions, we use a 

novel combination of the M3Fusion and Bayesian Maximum Entropy (BME) methods.  With 

M3Fusion, we create a multi-model composite by bias-correcting and weighting nine global 

atmospheric chemistry models based on their ability to predict observations (8,834 sites globally) 

in each region and year. BME is then used to integrate observations, such that estimates match 

observations at each monitoring site with the observational influence decreasing smoothly across 

space and time until the output matches the multi-model composite. After estimating at 0.5° 

resolution using BME, we add fine spatial detail from an additional model, yielding estimates at 

0.1° resolution.  Observed ozone is predicted more accurately (R2=0.81 at test point, 0.63 at 0.1°, 

0.62 at 0.5°) than the multi-model mean (R2=0.28 at 0.5°). Global ozone exposure is estimated to 

be increasing, driven by highly populated regions of Asia and Africa, despite decreases in the 

United States and Russia. 
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INTRODUCTION  

Tropospheric ozone is harmful to human health through respiratory and cardiovascular 

health effects associated with short and long term exposure.1-3 Additionally, tropospheric ozone 

influences climate3 and damages plant growth.5,6 Surface ozone estimates at fine spatial 

resolution, which are required to determine the human health burden of ozone exposure, are 

typically based on two sources: monitoring networks and atmospheric chemistry models. 

Monitoring networks provide high spatial coverage of surface ozone observations in North 

America, Europe, Japan, South Korea, and recently China; however, stations are scarce 

elsewhere.7 Global atmospheric models provide concentration estimates across many years and 

cover all world regions; however, models have biases.8 

The Global Burden of Disease (GBD) Study conducts a comparative risk assessment that 

estimates the health burden caused by specific risk factors from 1990 to present day, updated 

regularly. Two ambient air pollution risk factors are analyzed: fine particulate matter (PM2.5) and 

ozone.9,10 GBD PM2.5 estimates are generated through a combination of satellite retrievals and 

land use information with a single atmospheric model calibrated to surface observations with a 

Bayesian hierarchical model.11,12 In contrast, global ozone estimates prior to GBD 201713 were 

provided by a single model with no bias correction to observations.14 Satellite measurements 

provide PM2.5 estimates at fine resolution, but do not accurately detect surface ozone.14,15 

The recent Tropospheric Ozone Assessment Report (TOAR) collected ozone 

observations from thousands of sites around the world, which made it possible to incorporate 

surface observations into GBD estimates.7,16 For GBD 2017, TOAR observations were combined 

with six atmospheric models from phase one of the Chemistry-Climate Model Initiative 

(CCMI)17 using the M3Fusion method for the average of 2008 to 2014.18 In M3Fusion, the 
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models were bias corrected and combined by finding the optimal linear combination of models in 

each world region, weighted based on their performance with respect to observations. Within 

two degrees of a monitoring station, the multi-model composite was then replaced with a spatial 

interpolation of observations.  The 2008–2014 ozone distribution was extended backwards 

(1990–2008) by scaling with cubic splines relative to prior GBD ozone estimates and forwards 

(2014–2017) by extending the annual rate of change from 2012, for use in GBD 2017.13 

While the M3Fusion method significantly improved upon previous GBD ozone estimates, 

we identify a potential for further improvements. In particular, the correction within two degrees 

of an observation can create discontinuities, which could be improved by using advanced 

geostatistical techniques that combine model output with observations using smooth weighting 

across space.  Here we use a novel combination of the M3Fusion and Bayesian Maximum 

Entropy (BME) methods,19-22 which is uniquely suited to the challenges of mapping global ozone 

concentrations, as only observations and models provide useful information and observations are 

sparse in some world regions.  The regional “large-scale” bias correction and weighting of 

models in the M3Fusion multi-model composite provides the best estimate of ozone far from 

observations.  Then BME provides a local “small-scale” correction, by smoothly integrating 

observations in both space and time such that estimates match observations at the measurement 

site, and the influence of those observations decreases with distance according to the 

spatiotemporal covariance.  Since ozone monitoring is inconsistent, allowing observations to 

affect predictions across time could provide more accurate estimates. Near observation locations, 

therefore, ozone estimates will be strongly influenced by observations.  BME has previously 

been used to fuse ozone observations with models on state and national scales,23-25 but it has not 

been used previously globally, and apart from Chang et al.,18 we are not aware of any global data 
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fusion of ozone observations and models.  

We aim to estimate global fine resolution (0.1°) surface ozone for each year from 1990 to 

2017 to support the GBD 2019 Study by combining surface observations with multiple global 

atmospheric models by first using M3Fusion to create multi-model composites, and then 

applying BME to smoothly fuse multi-model composites with observations in space and time. 

We improve upon the single 7-year mean ozone fields produced for GBD 201718 by producing 

yearly output for 1990-2017, including additional observations and model output, smoothly 

weighting observations across space and time, and applying fine spatial structure based on fine 

resolution model output. To add fine spatial resolution for GBD, we apply the fine-scale spatial 

patterns from a global fine resolution model simulation.26  Our annual global ozone maps were 

used by GBD 2019, which extrapolated to 2019 using log-linear trends based on our 2008-2017 

estimates, and estimated 365,000 (95% CI: 175,000-564,000) premature chronic obstructive 

pulmonary disease deaths globally, or 6.21 (2.99-9.63) million disability adjusted life years, from 

ambient ozone exposure in 2019.27   
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MATERIALS AND METHODS 

M3Fusion and BME are used in sequence to estimate global surface ozone 

concentrations.  Other methods have been applied on smaller scales, such as neural networks 

using meteorological and emission variables to predict ozone,28,29 but those relationships may not 

apply elsewhere, and those methods are inappropriate where there are no observations.   

GBD’s ozone metric for quantifying health outcomes from long term ozone exposure is 

the ozone season daily maximum 8-hour mixing ratio (OSDMA8).2 OSDMA8 is calculated as 

the annual maximum of the six-month running mean of the monthly average daily maximum 8-

hour mixing ratio, including months through March of the following year to contain the Southern 
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Hemisphere summer. All observations, model output, and estimates are reported here as 

OSDMA8.  
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Surface Ozone Observations. We include surface ozone observations from TOAR and the 

Chinese National Environmental Monitoring Center (CNEMC) Network (Figure 1). TOAR is the 

world’s largest collection of in-situ hourly surface ozone observations covering 1970-2015.16,30 

The database contains dense observations in North America, Europe, Japan, and South Korea, 

and sparse observations elsewhere.7 The database was updated for this project to include readily-

available datasets for the years 2015–2017, but measurements were not updated for all nations 

previously included. CNEMC includes surface ozone observations for 2013–2017 in China,31 

which were quality-controlled using the same algorithm that TOAR applies elsewhere.  The total 

observations ranged from a minimum of 1,199 in 1990 to a maximum of 4,999 in 2015. The 

incomplete TOAR update in 2016 and 2017 yielded fewer observation sites than 2015.  
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Figure 1. (a) TOAR and CNEMC monitoring locations with at least one valid yearly OSDMA8 

observation over 1990–2017. In total, there are 8,834 monitoring stations, 7,269 from TOAR and 

1,565 from CNEMC. (b) Surface observations as OSDMA8 in 2005, with an average of 45.5 ppb 

and maximum of 82.2 ppb in Mexico City, Mexico. (c) Surface observations as OSDMA8 in 

2015, with an average of 46.2 ppb and maximum of 80.9 ppb in Zibo, China. 
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Atmospheric Chemistry Model Simulations. We incorporate modeled ozone from nine 

atmospheric chemistry model simulations (Table 1). The models, mostly from CCMI,17 report 

output for 1990–2010 from the specified dynamics REF-C1SD experiment,17,32 which uses 
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annual MACCity emissions .33,34 Three models, MOCAGE, MERRA2-GMI, and GFDL-AM3, 

were extended past 2010. To increase models after 2010, we include output from the specified 

dynamics experiments of MRI-ESM2.0 and GFDL-AM4, for modified Coupled Model 

Intercomparison Project Phase 6 (CMIP6)35 experiments. Hourly ozone mixing ratios were 

processed to OSDMA8, using the same algorithm as for observations.  
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Table 1. Nine atmospheric chemistry models used in this study. 142 

Model Years  Resolution Experiment Reference  

CESM1 CAM4-Chem 1990–2010 1.9  2.5 CCMI REF-C1SD 36 

CESM1 WACCM 1990–2010 1.9  2.5 CCMI REF-C1SD 37,38 

CHASER 1990–2010 2.8  2.8 CCMI REF-C1SD 39-41 

GFDL AM3 1990–2014 2  2.5 CCMI REF-C1SD 42-44 

GFDL AM4 2010–2016 1  1.25 CMIP6 nudged to NCEP windsa 45,46 

MERRA2-GMI 1990–2017 0.5  0.625 MACCity and GFED-4s emissionsb 47,48 

MOCAGE 1990–2016 2  2 CCMI REF-C1SD 49,50 

MRI-ESM1r1 1990–2010 2.8  2.8 CCMI REF-C1SD 51 

MRI-ESM2.0 2011–2017 2.8  2.8 CMIP6 historical and ssp370c 452 

a Nudged to observed meteorology similar to GFDL-AM3 and uses anthropogenic emissions modified from CMIP6 

to reflect recent NOx trends in China and the United States45 

b
 MACCity anthropogenic emissions with biomass burning emissions from Global Fire Emissions Dataset version 

4s47,48 

c
 Emissions from the CMIP6 historical (2011–2014) and ssp370 (2015–2017) experiments52 
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Multi-model Composite. We use M3Fusion to create multi-model composites of the models 

available in each year from 1990–2017.18 This method corrects for model bias and finds the 
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linear combination of models in each region and year that minimizes the mean square error as 

compared to observations. Since model resolution varies, we use bilinear interpolation to smooth 

yearly OSDMA8 to a 0.5  0.5 grid. We interpolate yearly observations from irregular 

monitoring station locations to the 0.5 grid using the stochastic partial differential equation 

approach.53 In each of eight geographical regions (Figure S1) and each year, we weight each 

model to minimize the difference between the multi-model average and spatially interpolated 

observations based on a constrained least squares approach: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 2
                     ∑𝑠𝑔∈𝑅𝑒𝑔𝑖𝑜𝑛𝑟(𝑦̂(𝑠 − 𝛼 ∑𝑛

𝑔) 𝑟 − 𝑘=1 𝛽𝑟𝑘𝜂 (
{𝛼𝑟𝛽𝑟𝑘; 𝑘 𝑘 𝑠𝑔)) ,                      (1) 

= 1, . . , 𝑛}

𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝑟𝑘 = 1 𝑎𝑛𝑑 𝛽𝑟𝑘 ≥ 0  

𝑘=1

where sg is the grid cell at 0.5resolution, ŷ(sg) is the spatially interpolated observations, {𝜂k(sg); 

k=1,...,n} is the model output on the same grid from the n models available, r is a constant that 

corrects overall bias in each region, and rk is an optimal weight for the k-th model in region r. 

All model weights are constrained to be positive and sum to 1. The constant offset r guarantees 

that the residuals from this optimization have a zero mean, through which the mean model bias is 

corrected in each region.18  

Since M3Fusion relies on spatially interpolated observations to determine model weights, 

we modify the method for data sparse regions and years. In North America and Europe, we use 

weights based on each individual year’s models and observation values. For all other regions, we 

calculate individual year weights for 2000–2010, and apply weights from the aggregated 2000–

2010 period to 1990–1999. For 2011–2017, East Asia uses individual year weights, while South 

America, Africa, South-Central Asia, Russia, and Oceania use weights from the aggregated 
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2011–2014 period, for which the TOAR dataset was complete.  

Bayesian Maximum Entropy Methodology. BME is a geostatistical method that incorporates 

multiple forms of knowledge to predict an estimate of a homogenous, stationary, space-time 

random field.19-22  Using BME, we combine surface observations and annual multi-model 

composites to calculate an ozone estimate that matches observations at each monitoring station 

and the observational influence gradually diminishes across space and time until it matches the 

multi-model composite. BME has been described previously, including in the fusion of ozone 

observations with model output at state and national scales120-24,54.   We model the offset-

removed, homogeneous space-time random field (S/TRF) X(p) at the space-time coordinate 

p=(s,t).24 In BME, there are two forms of knowledge: site-specific and general. Site-specific 

knowledge can consist of hard data, with no assumed uncertainty, and soft, probabilistic data. 

Here we only have hard data, which is the linear limiting case of the BME data integration 

framework.24 We remove the offset, the multi-model composite at monitoring stations (oz(p0)), 

from OSDMA8 observations (z0) at monitoring station locations p0 to obtain hard data x0: 

         𝒙0 = 𝒛0 − 𝑜𝑍(𝒑0)                                                       (2) 

The general knowledge base of X(p) includes the mean function mx(p) = E[X], which is assumed 

to be zero, and the covariance function cx(p,p’) = E[X(p)-m(p))(X(p’)-m(p’)],which is 

determined by the experimental covariance of x0:  

1 𝑁(𝑟,𝜏)
𝑐𝑋(𝑟, 𝜏) ≈ ∑ 𝑥ℎ𝑒𝑎𝑑,𝑖𝑥𝑡𝑎𝑖𝑙,𝑖 − 𝑚2

𝑋                               (3) 
(𝑟,𝜏) 𝑖=1𝑁

where N(r,) is the number of pairs of points with values (xhead, xtail) separated by a distance r 

and time , and mx is the mean of x0. For the S/TRF X(p), we use an exponential covariance 
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model to best fit the experimental covariance:  

−3𝑟 −3𝜏 −3𝑟 −3𝜏 −3𝑟 −3𝜏
       𝑐𝑋(𝑟, 𝜏) = 𝐶 [𝛾 exp exp  + 𝜆 exp exp  + (1 − 𝛾 − 𝜆) exp exp   ]        (4) 

𝑎𝑟1 𝑎𝑡1 𝑎𝑟2 𝑎𝑡2 𝑎𝑟3 𝑎𝑡3

with parameters in the supporting information. The BME estimation process involves using 

general knowledge to obtain the maximum entropy prior probability density function (PDF) of 

fG, updating fG by integrating site-specific knowledge to obtain the epistemic Bayesian posterior 

PDF fK, which provides a complete stochastic description of Xk=X(pk) at the estimation point pk, 

and computing space-time estimates based on fK. The posterior PDF is defined as:  

𝑓
𝑓𝐾(𝑥𝑘) = ( 𝐺(𝑥0,𝑥𝑘)

)                                                          (5) 
𝑓𝐺(𝑥0)

where xk is the offset-removed estimate at points pk. We define the ozone space-time random 

field (S/TRF), Z(p), as the sum of X(p) and the offset (multi-model composite): 

                                                          𝑍(𝒑) = 𝑋(𝒑) + 𝑜𝑧(𝒑)                                                         (6) 

We obtain the estimated OSDMA8 zk at pk by obtaining the BME estimate xk for the S/TRF X(p) 

at pk, and adding back oz(pk). 

Fine Resolution Addition. We calculate ozone BME estimates at 0.5° resolution; however, a 

finer resolution is desirable for GBD to reduce spatial misalignment with population. Since 

neither the observations nor the models represent ozone at fine resolution, except where 

observations are dense, we use the spatial distribution of a fine resolution model. We use output 

from a NASA G5NR-Chem model26 simulation from July 2013 to June 2014 at 0.125° 

resolution, which we regrid to 0.1° resolution, to provide the fine spatial structure within each 

0.5° grid cell for each year 1990-2017. While we do not expect the modeled 2013–2014 ozone to 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 



   

be accurate for every year, we use the modeled spatial distribution to inform the fine-scale spatial 

pattern for each year.  In doing so, we assume that the fine spatial patterns of OSMDA8 do not 

change over time, as these reflect the spatial distributions of emissions and land use, as well as 

influences like topography and land/water interfaces. For each 0.5°grid cell, we subtract the 

average of NASA G5NR-Chem grid cells from the BME estimate, and add this difference to 

each NASA G5NR-Chem grid cell at 0.1° to obtain our BME estimate at 0.1°. Consequently, the 

sub-grid variability of the output matches the G5NR-Chem model, and the average of each 0.5° 

grid cell remains the same as the BME estimate (Figures S2-3). 
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RESULTS 

Multi-model Composite. We determine weights for each model in each region and year (Table 

S1). In most regions and years, the multi-model mean ozone (the simple average of all models) is 

biased high, as models generally overpredict ozone.8,18 Therefore, the M3Fusion multi-model 

composite (Figure 2) tends to decrease average ozone compared to the multi-model mean.  
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Figure 2. Multi-model composite as OSDMA8 in 2005 (a) and 2015 (b).  226 

BME Coarse Resolution Output. We obtain yearly ozone output at 0.5° resolution, with an 227 



   

associated variance at each estimation point (Figure 3; Figures S4-31). The ozone output matches 

an observation at its space-time location, and the observation’s influence decreases in space and 

time according to the derived spatiotemporal covariance (Equation S3). In regions with high 

observational coverage, there is greater spatial variation in our output, whereas less monitored 

regions are smoother. Across the years, areas of low estimated ozone include the Amazon, 

Oceania, and southeastern Africa; while high ozone is estimated in East Asia, South-Central 

Asia, western North America, and central Africa. The Amazon and central Africa are 

unmonitored; therefore, their respective low and high ozone estimates are based on model output 

reflecting ozone chemical destruction and dry deposition over the Amazon55 and biomass 

burning in Africa.56 

In BME, observations are treated as hard data with no variance; therefore, regions with the 

highest number of observations have the lowest variance, such as North America, Europe, and 

Japan in 2005 and additionally eastern China in 2015. Away from observations, the output is 

equal to the multi-model composite and the variance reaches a maximum of 60 ppb2, equal to the 

variance of the offset removed observations. To visualize how BME adjusted the multi-model 

composite using observations, we subtract the multi-model composite from our BME estimate 

(Figure 3). In unmonitored regions, there is no difference between our BME output and the 

multi-model composite. When adding fine resolution in the final step, differences on the global 

scale are unnoticeable (Figures S4-31).   
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 247 

Figure 3. BME estimate as OSDMA8 for 2005 (a) and 2015 (b).  BME variance for 2005 (c) and 

2015 (d). Effect of BME fusion of observations (BME estimate minus multi-model composite) 

248 

249 



   

for 2005 (e) and 2015 (f). Positive values occur where our estimate is higher than the multi-

model composite, negative values where our estimate is lower.  

250 

251 

Influence of Observations through Time. The ability of an observation to influence other years 

is an important component of our method, since observational coverage changes, generally with 

more stations being added. The extent of an observation’s influence on other years depends on 

the number of nearby stations in space and time, with more remote stations having a longer 

temporal influence. In addition to the space-time BME estimates above, we also perform “space-

only” BME, in which observations only influence ozone estimates across space in a single year. 

By taking the difference between space-time and space-only results, we evaluate how 

observations influence other years. Since the CNEMC observations started in 2013, analyzing 

2012 highlights their temporal influence (Figure 4). On the global scale, the differences between 

the space-time and space-only methods are difficult to distinguish, but the major differences 

occur across China. Most of the non-zero differences occur in areas where CNEMC observations 

were added in 2013–2017, showing the influences of those observations (Figure 4).  Whereas 

Figure 4 shows that BME largely decreased ozone estimates over China in 2012, the effect of 

adding BME differed among years, including increasing ozone in 2015 and 2016 (Figures S29-

30). 
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Figure 4. (a) Space-only BME result in 2012 as OSDMA8. (b) Space-time BME result in 2012 

as OSDMA8. (c) Observation locations in 2012 and 2013–2017. (d) Effect of BME space-time 

influence of observations (space-time BME minus the space-only BME) for 2012. 
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Evaluation. To evaluate our results, we perform a leave one out cross validation (LOOCV), 

where one observation is removed and we evaluate our ability to predict this observation, in five 

scenarios: 

- Multi-model mean: average of all model output available in a given year.  

- Multi-model composite: combination of model output using M3Fusion. 
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- Space-only correction: BME corrected multi-model composite where observations 

only influence across space in a single year. 

- Space-time correction: BME corrected multi-model composite where observations 

influence across space and time. 

- Fine resolution: space-time corrected output with fine resolution from the NASA 

G5NR-Chem model. 

LOOCV was performed using two methods: predicting ozone at the test point’s grid cell and at 

the test point’s specific space-time location. The grid cell prediction was performed to allow a 

fair comparison between scenarios, since the fine resolution addition is limited to predicting at 

the grid cell level, and to evaluate the benefit of increasing output resolution. When predicting at 

the test point’s grid cell, each subsequent scenario improved performance, as shown by the root 

mean square error (RMSE) (Table 2). The multi-model composite outperforms the multi-model 

mean across all validation statistics. Correcting the multi-model composite across space using 

observations improves the results, which is further amplified by correcting across both space and 

time. Adding fine spatial structure, which gives our final output, slightly improves performance 

relative to the space-time scenario.  All methods overestimate ozone in comparison to 

observations, as shown by the mean error (Table 2), though our final product is biased high only 

slightly.   
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Table 2. LOOCV statistics,a where results are evaluated in the 0.5 or 0.1 grid cells containing the 

test point, or at the test point’s space-time location. 
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295 

Scenario Prediction location RMSE ME R2 varE varZ 

(ppb) (ppb) (ppb2) (ppb2) 

Multi-model Mean 0.5° grid cell  13.76 11.00 0.28 68.48 62.08 

Multi-model Composite 0.5° grid cell  7.82 1.05 0.30 60.03 43.09 

Space-only Correction 0.5° grid cell  6.01 0.42 0.57 36.00 60.14 

Space-time Correction 0.5° grid cell  5.62 0.57 0.62 31.30 62.01 

Fine Resolution  0.1° grid cell  5.54 0.22 0.63 30.68 63.24 

Multi-model Composite Test point’s location 7.82 1.07 0.30 60.00 43.19 

Space-time Correction Test point’s location 3.99 0.01 0.81 15.94 81.26 

a Root mean square error (RMSE), mean error (ME), R-squared (R2), variance of error (varE), and variance of the 

estimated ozone (varZ). The mean and variance of observed ozone are mO=45.62 ppb and varO=81.96 ppb2, 

respectively. Statistic definitions are included in Table S2. 
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For comparison with other studies, we include statistics for predicting at the specific 

space-time location (Table 2).  The addition of the space-time correction to the multi-model 

composite decreased RMSE from 7.82 to 3.99 ppb, a 49% reduction. In comparison, Chang et 

al.18 report that the correction to the multi-model composite in that study decreased the RMSE 

from 5.16 to 3.82 ppb, a 26% reduction. The greater relative reduction in RMSE here is 

attributed to the incorporation of both spatial and temporal autocorrelation, and shows our 

improvement relative to Chang et al.18.  
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Population-Weighted Ozone Trends. With our yearly output, we use global gridded population 

from GBD 2019 to analyze trends in population-weighted ozone as an indicator of exposure. The 
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2019 global population is used for all years, meaning that differences in exposure result from 

changes in ozone, not population. To determine how ozone exposure has changed from 1990–

2017, we examine the percent of the global population exposed to intervals of OSDMA8 (Figure 

5). Global ozone exposure increases over this period, with an increase in the global population 

exposed to highest concentrations (>55 ppb). In 2017, 21.3% of the global population was 

exposed to OSDMA8 higher than 65 ppb, more than double the percentage in any previous year. 

Note that the OSDMA8 metric is not compared easily with national standards or WHO 

guidelines, which are typically based on the daily 8-hr maximum. For perspective, the risk of all-

cause, circulatory, and respiratory mortality reportedly increases by 2%, 3%, and 12% per 10 ppb 

increase in long-term OSDMA8, respectively, with some evidence that ozone influences 

mortality at concentrations above about 35 ppb.2 

We analyze the population-weighted trends from 1990–2017 for each world region 

(Figure 5) and the most populous countries (Figure S32). Globally, there is a positive trend in 

population weighted ozone for 1990–2017, driven in large part by positive trends in highly 

populated and polluted regions of South-Central Asia, East Asia, and Africa. Low population-

weighted ozone occurs in South America and Oceania. Negative trends occur in North America 

and Russia; Europe has a weak negative trend, with the European Union showing no change.  

We caution that these trends are most uncertain before 2000 and in regions with few 

observations; under these conditions our estimated trends mainly reflect models and a small 

number of observations.  Year-to-year changes in ozone in regions with few observations may 

also result from using different model weights in individual years.  These trends are supported by 

a previous analysis of TOAR data for 2000–2014 summertime ozone, which found a positive 

trend in East Asia and negative trends in North America and Europe.57 Similarly, a study of 
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CNEMC observations showed increases in China for 2013–2017.31 One study suggests that the 

2013-2017 increase over China was influenced most by the decrease of PM2.5, which increased 

HOx radicals58; therefore, a PM2.5 increase might explain our estimated 2007-2013 ozone 

decrease.  Increasing trends in other regions with few observations, including Africa and South 

Central Asia are supported by long-term aircraft59 and satellite column observations.47   
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Figure 5. (a) Percent of the global population exposed to 10 ppb intervals of OSDMA8 from 

1990-2017. (b) Ozone trend regionally (regions defined in Figure S1) over 1990–2017 for the 

metric of population weighted OSDMA8. All trends have p-values less than 0.05, except for 

Europe and South America (Table S3). Uncertainty intervals are included in Figures S33-46. 
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DISCUSSION 

We create fine resolution yearly ozone distributions for 1990–2017 that incorporate 

surface observations and output from nine atmospheric chemistry models, using a novel 

combination of the M3Fusion method for creating a multi-model composite, which dominates the 

large-scale ozone estimates, and BME data fusion which influences ozone estimates near 

observation locations, smoothly integrating observations in space and time. Our analysis finds 

that methods incorporating observations outperform ozone estimated from models only. 

Additionally, the influence of an observation across multiple years in BME further improves our 

ozone estimate. Our method’s major strengths include the incorporation of multiple data types, 

the smooth weighting of observational influence across space and time, the ability to output a 

variance at every estimation point, and the estimation of global ozone with fine spatial structure. 

The improvement in model performance from using our combination of M3Fusion and BME 

provides a caution against using simple spatial interpolations of observations or output of a 

model without bias correction, to represent ozone.  Although we improve upon the previous 

GBD ozone estimate, some limitations remain. The lack of monitoring stations in large populous 

regions limits our abilities to understand ozone exposure in these areas, where these uncertainties 

affect both the multi-model composite and BME data fusion. Our method is limited in years with 

fewer observations and models available; additionally, the fine resolution model output that 

informs the fine spatial pattern of our output is only available for a single year. Future work may 

apply a nonlinear bias correction, or use machine learning to correct bias,60 to the multi-model 

composite to improve the global offset, and thus the overall estimation.  Our work also shows the 

value of using multiple models in creating a multi-model composite, as output from each model 

was selected (weight>0) in at least some regions and years. 
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Our method can be applied to future years as more observations and model output 

become available. Additionally, our method can be used to estimate ozone metrics other than 

OSDMA8, including for studies of vegetation and crop impacts.61 While model output and 

geostatistical techniques like BME can estimate global ozone, estimates suffer from the lack of 

observations in some world regions. Additional observations, especially in unmonitored regions 

with large populations including megacities in low- and middle-income nations, are essential to 

improve understanding of ozone exposure and health burden. 

Ozone exposure is increasing globally, with global population-weighted ozone showing a 

positive trend from 1990-2017, driven by strong positive trends in highly populated and polluted 

regions of Asia and Africa. The increasing global exposure to ozone indicates that current ozone 

management policies are failing to reduce ozone exposure in many regions of the world.  Our 

results can be used by policy makers to identify regions where ozone pollution could be 

mitigated through reductions of ozone precursor emissions, mainly from fossil-fuel combustion, 

on local, national and continental scales, or through international agreements to reduce 

emissions, including methane, that affect global background ozone. 62,63 
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